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Abstract. We present 3D CoMPaT, a richly annotated large-scale dataset
of more than 7.19 million rendered compositions of Materials on Parts
of 7262 unique 3D Models; 990 compositions per model on average. 3D
CoMPaT covers 43 shape categories, 235 unique part names, and 167
unique material classes that can be applied to parts of 3D objects. Each
object with the applied part-material compositions is rendered from four
equally spaced views as well as four randomized views, leading to a to-
tal of 58 million renderings (7.19 million compositions ×8 views). This
dataset primarily focuses on stylizing 3D shapes at part-level with com-
patible materials. We introduce a new task, called Grounded CoMPaT
Recognition (GCR), to collectively recognize and ground compositions
of materials on parts of 3D objects. We present two variations of this
task and adapt state-of-art 2D/3D deep learning methods to solve the
problem as baselines for future research. We hope our work will help ease
future research on compositional 3D Vision. The dataset and code are
publicly available at https://www.3dcompat-dataset.org/

1 Introduction

Various datasets have been proposed to facilitate 3D visual understanding in-
cluding ShapeNet [4], ModelNet [33], and PartNet [26]. Recently, 3D-FUTURE [12]
was proposed, which contains 9,992 industrial 3D CAD shapes of furniture with
textures developed by professional designers. Despite these significant efforts to
create 3D datasets, current 3D object datasets (e.g., [4,33,26]) and 3D Scene
datasets (e.g., [8]) lack part-level material information. The availability of ma-
terial information has multiple benefits. First, material information provides
additional semantic information about an object. Second, material information
enables more realistic renderings making the models more suitable for synthetic
to real transfer. Third, the same geometric 3D shape can be rendered with differ-
ent material assignments leading to more variability during training (see Fig. 1).

We introduce a richly annotated large-scale dataset, dubbed as 3D CoMPaT,
Compositions of Materials on Parts of 3D Things. The dataset contains more
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Fig. 1: Stylized models in the 3D CoMPaT dataset. We show several compositions
of 8 selected models in the dataset, stylized with different materials.

than 7.19 million rendered model styles from 8 views, covers 43 shape categories,
235 unique and distinguishable part names, and 167 unique and distinguishable
materials from 10 material classes that can be applied to parts of 3D objects.
Each object with the applied part-material compositions is rendered from four
equally spaced views, leading to 58 million (7.19 million compositions ×8 views)
images in total. Examples of some rendered compositions and views can be seen
in Fig. 1 and 2 respectively.

We start with 7262 unique shapes with a total of 37198 segmented parts
(i.e., 5.12 segmented parts per shape on average), and we annotate the list of
compatible/applicable materials for each part. Then, we sample a model by
enumerating randomly over the compatible materials for each part with a limit of
1000 compositions per shape, leading to 7.19 million compositions of 3D objects.
Connection and differences to existing datasets. The proposed dataset is
different from the currently available datasets in the literature in the following
ways. First, the dataset contains a diverse set of high-quality materials beyond
mere texture maps. Second, for each part found in every 3D model, the dataset
defines a set of materials that may be applied to this part in that model, allowing
us to generate multiple material combinations for a single model (we call each
combination a style). The models in 3D-FUTURE [12] and ShapeNet [4] do not
have multiple styles, and also, in the ShapeNet dataset, only a small portion of
3D shapes are stylized. The following four key aspects can characterize our 3D
CoMPaT dataset in contrast to existing datasets.
–(a) human-generated vs. 3D scanned geometry. For example, ScanNet [8] and
Matterport3D [3] datasets are scanned 3D geometry. Conversely, ShapeNet [4]
and our 3D CoMPaT dataset are human-generated.
–(b) part segmentation information. For some datasets, none or only a subset
of the shapes have segmented part information, which is an important aspect of
datasets like PartNet [26] and is also a characteristic of our dataset.
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Fig. 2: 3D CoMPaT Dataset. Left: Examples of a stylized cabinet. The cabinet
has five parts, shelves, drawers, handles, back and side panel, indicated as high-
lighted. The box below contains the material names for the indicated parts in
different stylized cabinets. Middle: Each 3D object is rendered in four canoni-
cal and four randomized views. Right: Part segmentation masks for randomly
selected shapes from our dataset.

–(c) texture coordinates, textures, and materials. Since stylizing the composition
of 3D model parts is at the heart of our work, our models have texture coordi-
nates and material compatibility information to enable high-quality rendering of
hundreds of compositions of materials on each shape. This is the most important
distinguishing characteristic of our 3D CoMPaT dataset compared to existing
datasets. There was some earlier effort to augment a subset of ShapeNet with
material information [24]. This dataset has fewer shapes (3080 vs 7262), parts,
and materials compared to our work.
–(d) automatically generated vs. human-generated information. 3D CoMPaT
part names are consistent and come from a list of allowable part names per
model category. All models are manually segmented at a part level rather than
being segmented with deep learning models like OpenRooms [23]. Furthermore,
in 3D CoMPaT all texture coordinates are developed and verified by humans
(refer to Sec. 3 for more details).

We validate our dataset with experiments covering main 3D recognition tasks,
including 3D object classification, 3D part recognition, and material tagging.
Grounded CoMPaT Recognition (GCR) Task. Finally, we introduce a
novel task, dubbed as CoMPaT recognition. It aims at recognizing and ground-
ing the shape category collectively with the part-material pairs associated with
the shape, e.g., recognizing that the example in Fig. 2 is a “Cabinet”, with a
handle made of “shiny nickel (metal)” and a back made of “maple coffee wood”.
Contributions.

– We propose a new dataset of 7.19 million stylized models to study composi-
tion of Materials on Parts of 3D Things. Our dataset contains (a) a diverse
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set of 167 materials for 3D shapes. (b) The material assignment is done at
part-level. (c) Segmentation masks in 2D and 3D are provided, alongside (d)
human-verified texture coordinates. We hope this dataset may also facilitate
future research on retrieving objects in 3D scenes (e.g., localizing a specific
“chair” or “table” from Fig. 2).

– We validate our dataset by a set of experiments involving 2D/3D shape
classification, part recognition (detection and segmentation), and material
tagging.

– We also propose Grounded CoMPaT Recognition, a novel task of collectively
recognizing and grounding compositions of materials on parts of 3D objects.
We introduce two variants of this task, and adapt 2D/3D state-of-the-art
methods as baselines for this problem.

2 Related Work

Datasets of 3D shapes and scenes. ModelNet [33] is a large-scale 3D CAD
model dataset covering 40 categories. ShapeNet [4] is a richly-annotated, large-
scale repository of shapes with semantic categories and organizes them under the
WordNet taxonomy. PartNet [26] assigned rich fine-grained segmentation labels
on the part level. Recently, 3D-FUTURE [12] was proposed, which contains 9,992
unique industrial 3D CAD shapes of furniture with high-resolution informative
textures developed by professional designers. In contrast to 3D-FUTURE, Part-
Net, and ShapeNet, where only a small portion of 3D shapes can be assigned
materials, our dataset contains 7262 models, all of which can be stylized with
different textures. PhotoShape [27] is a dataset similar to ours. More specifically,
it uses a technique to automatically apply materials to existing models, mainly
from ShapeNet [4]. Some rendered models are not that realistic. The texture
coordinates are generated automatically, while ours are human-generated and
human-verified. PhotoShape only has a single shape category, i.e., chair, and
has only five material classes (leather, fabric, wood, metal, plastic). In compar-
ison, our dataset has 43 shape categories and thirteen material classes (wood,
metal, fabric, marble, ceramic, glass, leather, paint, paper, plastic, rubber, gran-
ite, wax). OpenRooms [23] is a large dataset containing indoor scenes. The au-
thors automatically segment CAD models of the scenes into parts based on a
segmentation model trained on the PartNet dataset. Hence, OpenRooms parts
are restricted by the part classes present in PartNet. This also may introduce
some segmentation errors in part localization and naming since learned predic-
tions are not as accurate as human annotations. In contrast, our models are
manually annotated and verified. Furthermore, our dataset contains models of
objects and not indoor scenes, which gives users more flexibility. The major dif-
ference between OpenRooms and 3D CoMPaT is that OpenRooms uses scanned
geometry captured by sensors while our dataset is manually constructed. We
also note that Lin et.al. [24] introduced 3080 stylized models for three categories
with five material classes and part information. However, the scale of our dataset
is much larger.
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Texture Generation. TM-Net [13] is a novel deep generative model that
generates meshes with detailed textures and synthesizes plausible textures for
a given shape. Their work is inspired by SDM-NET [14]. Their method pro-
duces texture maps for each part, which means it works in a part-aware fashion.
Each part is represented as a deformed box. They encode geometry and tex-
ture separately and learn the texture probability distribution conditioned on
the geometry. This allows their method to be a generic framework for different
application scenarios.

High-Level 3D Vision. Encouraging progress in 3D scene understanding,
ScanNet [8] introduced a large-scale dataset of 1513 real-world scenes. More
recently and at the intersection of 3D vision and natural language, ScanRefer [5]
and Referit3D [2] datasets were recently introduced on top of ScanNet to study
3D object identification based on free-form natural language descriptions. The
detailed composition of the shape category and part-material pairs provided in
3D CoMPaT can serve as a rich semantic description of shapes, and hence may
facilitate more fine-grained visual grounding of language referring to 3D objects
and scenes.

3 3D CoMPaT: Data Collection, Benchmark, and
Validation

The 3D CoMPaT dataset collection pipeline comprises three main processes: 3D
CAD models collection, materials collection, material assignment, and rendering.

3.1 3D CAD Models Collection

3D CoMPaT is based on a collection of 3D CAD models managed by Poly9
Inc.. The initial data has high-quality 3D models, but the part names, segmen-
tation information, class information, and material information is often missing
or faulty. Repetitions of the same CAD model may be present, and some CAD
models contain a set of similar parts. The team for building 3D CoMPaT con-
sisted of professional CAD modelers, researchers, and crowd-sourced workers
from AMT. The process for creating 3D CoMPaT consists of frequent review
meetings between researchers and professional modelers discussing issues with
part names, shape categories, materials, and shape segmentation continuing for
over one year. Based on these reviews, the professional modelers would adapt
their processes, such as labeling instructions, or the allowable list of part names.
While professional modelers did all the labeling and modeling work, researchers
focused on automatic and manual quality control. While ultimately most of the
class names, part names, and material assignments had to be changed during
our effort, we only selected shapes that already had high geometric quality and
texture coordinates so that little effort was needed to fix problems in the geom-
etry. Due to our multi-stage verification process, each 3D shape was manually
inspected more than once. Models that failed a stage of the quality control
pipeline were sent back to the team of professional modelers.
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– (A) Shape and Part Category Labeling: Each 3D CAD model is assigned
a shape category label (e.g., chair, desk, table). All models are consistenly seg-
mented into parts and every part in every model is assigned a part name (e.g.,
“seat, back, or legs”). Each part in each 3D CAD model is also assigned a list
of compatible material types, e.g., for one particular chair a modeler could as-
sign that the legs of the chair can be made of either metal or wood. Designing
a consistent list of allowable part names for each shape category is a consider-
able effort. We sourced information from online retailers, other datasets such as
PartNet [26], names used in 3D CAD models, crowdsourcing services and our
own experience. In particular, we started with a smaller subset of shapes and
some initial labeling of part names to verify these annotations using Amazon
Mechanical Turk (AMT). Even though our goal to fix the list of allowable part
names early in the process, we had to adapt the list over time in the review
meetings as new shapes were being processed.

– (B) Duplicates and Near-duplicates Removal: Some 3D CAD models are
repeated more than once or contain multiple instances of the same model (e.g., a
3D CAD model representing a set of vases with different sizes). we implemented
an automatic procedure to detect duplicates and near-duplicates to remove them
from the dataset.

– (C) Part Segmentation: Every CAD model should be part-segmented; i.e.,
every CAD model consists of a set of separated part meshes. We manually check
the segmentation of each shape in a 3D viewer and correct them if they are not
consistent with the defined part categories.

– (D) Texture Coordinates Quality Check. For a proper material assign-
ment, the quality of texture coordinates was verified qualitatively. We followed
two strategies. First, we overlay different materials over each part and check how
it renders in different settings (we used an increasing level of light bounces to
see how textures look). Second, we applied checkered textures to visually inspect
the texture coordinates; as illustrated in Fig. 4 (left). For the evaluation of the
3D geometry, we checked that the models are watertight and that they have
outward-pointing normals.

Fig. 3: Examples of materials
found in the dataset. We show
examples of wood, metal, and
fabric materials in the first,
second, and third rows re-
spectively.

Camera

Object

Area Light #1

Area Light #2

Area Light #3

Fig. 4: Left: Examples of texture coordinate
checks. Right: Blender rendering environment.
The environment contains three light sources (a
directional light source and three area lights)
and a plane at the bottom. The 3D CAD model
is normalized, centered on the origin, and placed
on the plane.
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Crowdsourcing the Verification of Shape and Category labels. To verify
annotated class names of a given 3D model, we asked five MTurk participants
to choose from the following four options: (1) ”yes, I would name the model the
same,” ”(2) yes, but I would have given the model a different name,” (3) ”no,
this is a wrong name (please specify a name)” or (4) ”no, the model cannot
be given a specific name.”. We used a similar interface to verify the part class
names; the part-annotation and model-annotation verification interface used in
our AMT experiments is shown in the supplementary material [22].

3.2 Materials Collection.

For materials, we use the free and open-source Nvidia vMaterials library. The
Nvidia vMaterials library has over 2150 real-world materials and continues to
grow. These materials are defined by the Nvidia MDL specification, allowing
PBR materials with higher visual quality than basic materials based on diffuse
textures. Materials from this library have the infinite tiling feature, allowing
textures to be spread across large areas without a clear repeating pattern. The
library provides class labels for every material organized in a hierarchical tree
(e.g., an antique oxidized aluminum is a rusted aluminum metal). Tab. 1 presents
the count of distinct subtypes for each material class (10). In total, the number
of materials in our dataset is 167.

Table 1: 3D CoMPaT material classes and
number of materials per class.

Wood Metal Fabric Marble Ceramic Glass

40 32 35 14 8 6

Leather Plastic Rubber Granite Wax Total

13 10 5 3 1 167

We manually inspected these mate-
rials, ignoring materials that may
not be realistic when applied to
specific parts. For example, a fabric
material that has a mesh-like ap-
pearance is not suitable to be used
for chair cushions (see Fig. 3).

3.3 Part-Material Assignment

One of the novel aspects of 3D CoMPaT is the presence of material compati-
bility information for parts present in each 3D model. Human workers conduct
the process of material assignment. This process was realized at the instance
level, i.e., the shape and parts of each 3D model were considered to compose
them with appropriate materials. For example, the legs of one particular table
could be assigned either metal or wood and the legs of another table could be
assigned wood or plastic. The assignment space for this process is 7262 x 5.12
x 10 (where 10 is the number of material categories). We only assign material
classes. For example, all 32 metals can be assigned to a shape part in the material
sampling stage if a metal is a possible assignment. We also control compatibility
to some extent through grouping information. For example, all table legs have
to be assigned the same material. However, we do not explicitly control complex
material combinations, as this is hard to integrate into the currently used 3D
modeler. This has advantages and disadvantages. An advantage of the current
solution is that we allow a greater variety of models which can be a good source
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of data augmentation. As a disadvantage, several sampled stylized models may
not be aesthetically beautiful. Overall, we believe that the consistency of the
material assignments is better controlled at sampling process that assigns mate-
rials. For example, the sampler could select the same material for chair back and
legs significantly more often than different materials. We believe that is more
efficient and compatible with our current approach while an explicit control of
material combinations suffers from an exponential explosion of possible combi-
nations that need to be controlled. To analyze this issue further will require a
significant effort in synthetic to real transfer which we leave to future work.

3.4 Rendering Composition of Materials on Parts of the Collected
CAD Models

Once material assignments for each part are available, this information is used
to sample materials from the assigned categories. For example, if a tabletop is
made of wood, we can sample one of the 40 wood types, like teak, oak, hazelnut,
etc. In what follows, we refer to the combination of these materials assigned
to parts of a given CAD model as a composition. The application of one such
composition to the CAD model is called a style of the model.

For each 3D CAD model, we randomly select a material for each part from
the list of its compatible materials. We sample at most 1000 styles per 3D model.
– (A) Rendering. We use Blender [1] to render each CAD model into RGB
images from 8 different views, with the camera placed far enough for the entire
object to be visible. For the lighting setup, we use three light sources; see Fig. 4
(right). We render each stylized model in 4 standard views (front and back with
default model orientation and front left and back right with the model rotated
with 30 degrees around the z (up) axis). Further, we also render each model from
4 random views. The camera for random views is parameterized with elevation
angle θcam (in degree) ∈ [0, 90], while keeping the x, y same. The model is rotated
parameterized with random rotation angle θmodel (in degree) ∈ [0, 360].
– (B) Segmentation and Depth Maps. The rendered images in the 3D
CoMPaT dataset will be accompanied by corresponding segmentation maps and
depth maps. These maps will be rendered with the same four fixed views and
four random views.
– (C) Stylized 3D models. We plan to release the stylized 3D models, which
will enable their use in many 3D computer vision applications, including re-
trieval, reconstruction, and 3D generation.

3.5 Dataset Statistics

3D CoMPaT contains 7262 unique 3D shapes covering 43 shape categories. The
top 6 classes are (table, tray, bowl, chair, desk, cabinet). The dataset contains
37198 part instances covering 235 part classes, and 167 different materials from
10 material classes. The top 5 material classes are (metal, wood, fabric, paint,
marble); please see the supplementary for more details about shape classes, the
number of object instances per shape class, part, and material classes [22]. In



3D CoMPaT: Composition of Materials on Parts of 3D Things 9

Table 2: Comparison of 3D CoMPaT with other datasets in the literature. To
our knowledge, our dataset is the first one to have many different materials
applied to different parts in the same 3D model. ✓*: only a subset of shapes are
textured and the remaining shapes are with unidentified textures. ?: unknown.
HVT stands for Human Verified Textures.

Benchmarks Shapes No. Categories Material Classes Materials Shape Source Stylized Models HVT Parts per Shape

3D-Future[12] 9992 34 14(+1) ? industry 102972 × 10.3

3D Front[11] 13151 50 23 ? 3D-Future 13151 × 6.5

PhotoShape[27] 5830 1 5 363 ShapeNet, industry 11000 × 1-3

ShapeNetCore[4] 51300 55 × ✓* online, crowdsource × × ×
ShapeNetSem[4] ∼12000 270 × ✓* online × × ×
ShapeNetPart[35] 31963 16 × ✓* online × × 2.92

ModelNet[33] 151128 660 × × online × × ×
ObjectScans[6] 1,900 44 × × Scans × × ×
PartNet[26] 26671 24 × × ShapeNet × × 21.5

Lin et.al.,[24] 3080+115 3 5 × online, ShapeNet 3080+115 ? × 5.16

3D CoMPaT 7262 43 10 167 industry 7.19 million ✓ 5.12

Table 2, we show how our proposed dataset has more variety in the number of
materials and the number of materials assignments (styles) than the currently
available datasets.

Fig. 5a and Fig. 5b show the frequency with which different shape classes
and parts occur in the dataset. We observe that the dataset has an uneven
distribution as some parts, model classes, and materials are more frequent than
others. Fig. 5c shows the distribution of subsets of parts in different model
classes. The size of the bubble represents the occurrences of a part in a certain
model class, which we further categorized as very frequent, frequent, or less
frequent. It can be inferred from Fig. 5c that some parts are centered around
a single “model class”; for example, the “top” is mostly centered around the
“table” class, indicating the very frequent tabletop part in the dataset. Some
parts have high variability across different models. From Fig. 5c, we can see that
“leg” is a part that frequently occurs in “table” models but also in several other
models like “chair”, “cabinet”, and “desk”.

Table 3: Dataset statistics.

Total Number of Models 7262

Total Number of Model Classes 43

Total Number of Parts 37198

Total Number of Parts Classes 235

Minimum Number of Parts Per Model 1

Maximum Number of Parts Per Model 17

Average Number of Parts Per Model 5.12

Average Compositions Per Model 990

Total Number of Materials 167

Total Number of Stylized Models 7.19 million

Table 3 shows the statistics of 3D
CoMPaT in different aspects includ-
ing parts, model classes, material and
styles. The scale of material composi-
tions on model parts is a key differ-
ence of 3D CoMPaT when compared
to existing datasets, enabling styling
of all existing model classes with dif-
ferent part-material combinations that
are compatible. As we pointed out ear-
lier, some materials cannot be applied
to some parts (e.g., wood in exchange
for glass).
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3.6 Dataset Split and Non-Compositional Validation Experiments

We create training, validation, and test splits for the renderings. All renderings
and stylized versions of a 3D shape have to be assigned together to either train-
ing, validation, or test. Therefore, the splits are defined on shapes to prevent
data leak. The training set has 5597 shapes, the test set 924 shapes and the
validation set 477 shapes. Despite compositional recognition being the focus of
our work, a variety of standard tasks can benefit from our proposed dataset,
including 3D object classification, 3D semantic segmentation, shape classifica-
tion, image shape retrieval, shape reconstruction from single/multiple images.
We conducted experiments on some of these tasks to validate the properties of
our proposed 3D CoMPaT dataset.

3D Shape and Part Classification. Our dataset has an uneven distribution,
so some models and parts have more examples and hence help in better gen-
eralization. Some parts and models resemble their more frequently occurring
counterparts (e.g. jar and container), making classification challenging. Note
that there is some intersection between model class and part names, namely
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Fig. 5: 3D CoMPaT. (a) Number of samples per shape category. (b) Number of
samples per part class. (c) Frequency of occurrence of part and model pair. Note
that both visualizations do not cover all shape and part labels because of space
constraints; more details are provided in the supplementary [22].
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basket, bowl, candle holder, glass, shelf, table, tray, vase. This is because some
models are parts of other larger models (e.g. shelf as part of shelf structure or

Table 4: 3D CoMPaT non-compositional
validation experiments.

Architecture Task Test Performance

Pointnet++[29] 3D Shape Classification 57.95% Accuracy

DGCNN[32] 68.32% Accuracy

PCT[15] 69.09% Accuracy

Pointnet++[29] 3D Part Classification 24.18% Accuracy

PCT[15] 37.37% Accuracy

BPNet 2D [19] 2D Material Segmentation 35.75% mIOU

BPNet 3D [19] 3D Material Segmentation 17.03% mIOU

ResNet50 [18] 2D Material Tagging 0.53 F1, 0.67 AP

ResNet50 [18] 2D Shape Classification 76.82% Accuracy

cabinet). The presence of various
materials to style the 3D object
gives our dataset an edge over
other existing datasets. We con-
duct shape classification experi-
ments for the 3D models and the
3D parts. Results are reported
in Table 4, where we bench-
mark Point Cloud Transformer
(PCT) [16], DGCNN [32] , and
Pointnet++ [29] on shape classifi-
cation and Pointnet++ and PCT
on part classification; see results in Table 4.
2D and 3D Material Segmentation. We benchmark BPNet [19], a 2D and
3D joint UNet, for our 2D and 3D Material Segmentation in Table 4.

Table 5: Sim2Real trans-
fer: Accuracy results for
PointMLP [25] trained on
ModelNet40 and 3DCoM-
PaT (1 random composi-
tion), on ScanObjectNN’s
hardest variant.

Dataset Acc. (%)
ModelNet40 24.33
3DCoMPaT 29.21

2D Material Tagging/ Shape Classification.
We use a ResNet50 [18] backbone for encoding the
rendered images, to train a multi-label classifier over
the 167 materials in the rendered images. The F1
score and average precision were 0.53 and 0.67 re-
spectively. We also report a 2D shape classifica-
tion performance of 76.82% using ResNet50, on 50
canonical compositions; see Table 4.
Sim2Real 3D shape recognition. We trained a
PointMLP [25] model on ModelNet40 and 3D CoM-
PaT (with only one sampled composition/shape)
and evaluated on the hardest variant of ScanOb-
jectNN [31] (without finetuning). Table 5 shows 3D shape classification results
for 9 classes. Results show that pretraining on 3DCoMPaT shapes leads to better
generalization to real-world data than pretraining on ModelNet40.

4 2D/3D Grounded CoMPaT Recognition (GCR) Task,
Baselines, and Results

The goal of compositional modeling on 3D CoMPaT is to recognize the entire
composition of materials on parts of a given 3D model. More specifically, we aim
at correctly predicting the object category, part categories and the associated
material for every part in the 3D model. Fig. 6 visualizes some ground truth
and prediction examples for this task. This task is challenging because 96.31%
of the compositional frames at test time are unseen. We define a 3D CoMPaT
compositional frame as a shape category and a set of part-material categorical
pairs. Two compositional frames are different if they differ in a single part or ma-
terial assignment. In standard recognition settings the model only has to select
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Fig. 6: Example realized materials over parts of certain model classes. Below
each image is a table where the first row is the model class, the left column is
part names, and the right column is material name for those parts. On the left
outlined in gold are ground truth. The output from our material recognition, part
recognition, and model recognition model is on the right. Incorrect part names
and material names are highlighted in red, whereas correct ones are green.

the correct shape class and examples of all shape classes have been seen before.
By contrast, several proposed metrics require the correct recognition of compo-
sitional frames. The number of compositional frames is much higher than the
number of shape classes and for most compositional frames in the test set there
are no examples in the training set. This can be related to zero-shot recognition,
which aims at recognizing unseen categories that are defined by unseen compo-
sitions of visual attributes (e.g., [21,10,9,17]). This is also connected to existing
yet different compositional 2D computer vision tasks, including situation recog-
nition [28,34], which aims at identifying an activity like “surfing” in an image,
the engaged entities with their roles (e.g., “agent: woman”, “tool: surfboard”,
and “place: ocean”), and bounding-box groundings of entities.

Metrics. Inspired by the metrics proposed in [34,28] for compositional situation
recognition of activities in images, we define the compositional metrics of the
2D/3D Grounded CoMPaT Recognition (GCR) task as follows:

(a) Shape Accuracy: accuracy of the predicted shape category. (b) Value:
accuracy of predicting both part category and the material of a given part cor-
rectly. (c) Value-all: accuracy of predicting all the (part, material) pairs of a
shape correctly. We similarly define grounding metrics to check segmentation
masks. A grounding is correct if the IoU of a predicted part and ground truth
part is more than 0.5; it can be IoU on segmentation masks. (d) Grounded-
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Fig. 7: 2D/3D GCR-SEG: Modified 2D/3D BPNet segmentation [19] architecture
with 2D UNet [30] on the left and 3D MinkowskiUNet [7] on the right with same
number of pyramid levels.

value: accuracy of predicting both part category and the material of a given
part as well as correctly grounding it. (e) Grounded-value-all: accuracy of
predicting all the (part, material) pairs of a given shape correctly and grounding
all of them correctly. All these metrics are calculated for each shape and then
averaged across them to avoid bias toward shapes with more parts.

Given the shape dependence of metrics, we define three settings: (a) Ground
Truth Shape: the ground truth shape is assumed to be correct. (b) Top-
1 Shape: Shape category is predicted correctly. (C) Top-5 Shape: Shape
category is in the top-5 predictions. For (b) and (c), part-material pairs and their
groundings are considered incorrect if shape is not in top-1 or top-5 predictions,
respectively. We investigate two variants of the GCR task:

– (A) Joint 2D/3D GCR-SEG Setting and Baseline: 2D/3D GCR-SEG
aims at solving the GCR Task in 2D or 3D, where grounding of parts is measured
at the pixel precision for 2D and mesh triangle precision for 3D. Hence, we
adopted a segmentation approach to solve it, specifically the joint 2D/3D BPNet
segmentation model [19]; see Fig. 7. We adapted [19] to jointly predict shape,
part, and material recognition in the Grounded CoMPat recognition task. As
shown in Fig. 7, our adapted network consists of two branches: according to their
functional domains, we denote the left one as the 2D UNet branch and the right
as the 3D MinkowskiUNet branch. A Bidirectional Projection Module (BPM)
bidirectionally fuses the multi-view 2D and 3D features between two branches.
Features from the encoder of the U-Net are fed to a fully connected layer for
shape classification. Images and voxels can be aggregated in a coarse-to-fine
manner. BPNet can collect low-level and advanced complementary information;
see more details in the supplementary [22].

– (B) 3D GCR-SEG Setting and Baseline: Similar to (A), but in 3D only,
where part label and material labels are predicted at the point precision for
grounding. [20]. We built on PointGroup [20], a point cloud based method for
3D segmentation; see PointGroup adaptation details in the supplementary [22].

Results. Table 6 shows the results for 2D GCR-SEG using BPNet, 3D GCR-
SEG using our joint 2D/3D BPNet-based baseline. We report the “Standard”



14 Yuchen Li*,Ujjwal Upadhyay*, Habib Slim* et. al.

Table 6: 2D/3D Grounded CoMPaT recognition (GCR) Results.

Exp
Top-1 predicted shape Top-5 predicted shape Ground Truth Shape

Shape Acc. Value Value-all Value-grnd Value-all grnd Shape Acc. Value Value-all Value-grnd Value-all grnd Value Value-all Value-grnd Value-all grnd

2D GCR-SEG (BPNet)

Standard 36.91 6.81 3.54 3.29 0.07 39.07 7.29 3.74 3.48 0.07 65.07 27.72 36.15 2.89

GT Material 36.91 7.10 3.54 4.30 0.60 39.07 7.59 3.74 4.51 0.60 69.54 27.72 40.46 4.80

GT Part 36.91 7.52 5.77 4.94 1.20 39.07 8.07 6.28 5.37 1.49 86.54 71.73 71.83 44.80

2D GCR-SEG (BPNet) + Separate 2D Shape Classifier

Standard 67.86 40.39 16.57 23.23 1.78 77.60 49.28 20.67 27.50 1.89 65.07 27.72 36.15 2.89

GT Material 67.86 42.98 16.57 26.40 3.46 77.60 52.33 20.67 31.18 3.64 69.54 27.72 40.46 4.80

GT Part 67.86 55.12 46.58 46.02 30.08 77.60 66.89 57.36 55.81 37.30 86.54 71.73 71.83 44.80

3D GCR-SEG (BPNet)

Standard 36.91 5.39 2.02 0.65 0.03 39.07 5.68 2.07 0.70 0.03 44.59 12.52 4.92 0.47

GT Material 36.91 6.10 2.02 1.34 0.15 39.07 6.43 2.07 1.40 0.15 50.71 12.52 8.23 0.66

GT Part 36.91 6.30 4.13 2.05 0.82 39.07 6.72 4.40 2.29 0.92 77.27 65.30 44.83 36.57

3D GCR-SEG (BPNet) + Separate 3D Shape Classifier

Standard 67.53 29.83 8.12 3.25 0.46 87.23 38.34 11.07 4.30 0.47 44.59 12.52 4.92 0.47

GT Material 67.53 33.72 8.12 6.07 0.63 87.23 43.15 11.07 7.38 0.66 50.71 12.52 8.23 0.66

GT Part 67.53 50.08 42.42 27.86 22.65 87.23 63.53 54.06 36.44 29.31 77.27 65.30 44.83 36.57

compositional metrics described earlier in this section, on ten compositions. To
demonstrate how perfect prediction of either material or part influence the per-
formance, we also report results where we use ground truth materials as the
predicted material labels (“GT Material”), and ground truth parts as predicted
parts (“GT Part”). It is not surprising that compared to “Standard”, some met-
rics improve under “GT Material” and “GT Part” evaluation, especially for the
value and value-all metrics that depend on the predicted part and the material
labels. Note that all these baselines are composed of one model that jointly pre-
dicts shape and part material pairs in 2D or 3D. These models have a shape
recognition performance ranging between 36.91% and 67.86% top-1 accuracy.,
and between 39.07% and 87.23% top-5 accuracy.; see Table 6. This limits the
compositional performance, especially as we showed earlier in Table 4 that sep-
arate 2D and 3D Shape classifiers can reach 76.8% and 69.1% Top-1 Acc re-
spectively. Hence, we also evaluated our BPNet-based 3D GCR-SEG approach
where shape classes are predicted with a separate 3D PCT [15] classifier, lead-
ing to improved compositional performance. We observe similar behavior with
PointGroup-based 3D GCR-SEG solution; see supplementary for materials for
details [22]. The results suggest that designing a single model capable of per-
forming well on GCR metrics is a challenge, and we hope that our 3D CoMPaT
dataset and GCR baselines help ease future research.

5 Conclusion

We introduce 3D CoMPaT, a large-scale dataset of Compositions of Materials on
Parts of 3D Things. It contains 7.19 million styled models stemming from 7262
CAD models from 43 object categories. The unique aspect of 3D CoMPaT is that
it contains 3D shapes, part segmentation information, texture coordinates, and
material compatibility information, so that multiple high-quality PBR materials
can be assigned to the same shape part. We also propose a new task, dubbed as
2D/3D Grounded CoMPaT Recognition (GCR), that the dataset enables and
introduce baseline methods to solve them.

Acknowledgments. The authors wish to thank Poly9 Inc. participants for all
the hard work, without whom this work would not be possible. This research is
supported by King Abdullah University of Science and Technology (KAUST).



3D CoMPaT: Composition of Materials on Parts of 3D Things 15

References

1. Blender foundation, blender.org - home of the blender project - free and open 3d
creation software (2021) 8

2. Achlioptas, P., Abdelreheem, A., Xia, F., Elhoseiny, M., Guibas, L.: Referit3d:
Neural listeners for fine-grained 3d object identification in real-world scenes. 16th
European Conference on Computer Vision (ECCV) (2020) 5

3. Chang, A., Dai, A., Funkhouser, T., Halber, M., Niessner, M., Savva, M., Song,
S., Zeng, A., Zhang, Y.: Matterport3d: Learning from rgb-d data in indoor envi-
ronments. International Conference on 3D Vision (3DV) (2017) 2

4. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.: Shapenet:
An information-rich 3d model repository. Tech. Rep. arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Technological Institute at
Chicago (2015) 1, 2, 4, 9

5. Chen, D.Z., Chang, A.X., Nießner, M.: Scanrefer: 3d object localization in rgb-d
scans using natural language. arXiv preprint arXiv:1912.08830 (2019) 5

6. Choi, S., Zhou, Q.Y., Miller, S., Koltun, V.: A large dataset of object scans (2016)
9

7. Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: Minkowski convolu-
tional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 3075–3084 (2019) 13

8. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In: Proc. Computer Vision
and Pattern Recognition (CVPR), IEEE (2017) 1, 2, 5

9. Elhoseiny, M., Saleh, B., Elgammal, A.: Write a classifier: Zero-shot learning using
purely textual descriptions. In: Proceedings of the IEEE International Conference
on Computer Vision. pp. 2584–2591 (2013) 12

10. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their at-
tributes. In: CVPR 2009. pp. 1778–1785. IEEE (2009) 12

11. Fu, H., Cai, B., Gao, L., Zhang, L., Li, J.W.C., Xun, Z., Sun, C., Jia, R., Zhao,
B., Zhang, H.: 3d-front: 3d furnished rooms with layouts and semantics (2021) 9

12. Fu, H., Jia, R., Gao, L., Gong, M., Zhao, B., Maybank, S., Tao, D.: 3d-future: 3d
furniture shape with texture. arXiv preprint arXiv:2009.09633 (2020) 1, 2, 4, 9

13. Gao, L., Wu, T., Yuan, Y., Lin, M., Lai, Y., Zhang, H.: TM-NET: deep generative
networks for textured meshes. CoRR abs/2010.06217 (2020), https://arxiv.
org/abs/2010.06217 5

14. Gao, L., Yang, J., Wu, T., Yuan, Y., Fu, H., Lai, Y., Zhang, H.: SDM-NET:
deep generative network for structured deformable mesh. CoRR abs/1908.04520
(2019), http://arxiv.org/abs/1908.04520 5

15. Guo, M.H., Cai, J.X., Liu, Z.N., Mu, T.J., Martin, R.R., Hu, S.M.: Pct: Point
cloud transformer (2021) 11, 14

16. Guo, M.H., Cai, J.X., Liu, Z.N., Mu, T.J., Martin, R.R., Hu, S.M.: Pct:
Point cloud transformer. Computational Visual Media 7(2), 187–199 (Apr
2021). https://doi.org/10.1007/s41095-021-0229-5, http://dx.doi.org/10.1007/
s41095-021-0229-5 11

17. Guo, Y., Ding, G., Han, J., Gao, Y.: Synthesizing samples for zero-shot learning.
In: IJCAI (2017) 12

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition
(2015) 11

https://arxiv.org/abs/2010.06217
https://arxiv.org/abs/2010.06217
http://arxiv.org/abs/1908.04520
https://doi.org/10.1007/s41095-021-0229-5
http://dx.doi.org/10.1007/s41095-021-0229-5
http://dx.doi.org/10.1007/s41095-021-0229-5


16 Yuchen Li*,Ujjwal Upadhyay*, Habib Slim* et. al.

19. Hu, W., Zhao, H., Jiang, L., Jia, J., Wong, T.T.: Bidirectional projection network
for cross dimension scene understanding. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 14373–14382 (2021) 11,
13

20. Jiang, L., Zhao, H., Shi, S., Liu, S., Fu, C.W., Jia, J.: Pointgroup: Dual-set point
grouping for 3d instance segmentation. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 4867–4876 (2020) 13

21. Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object
classes by between-class attribute transfer. In: CVPR. pp. 951–958. IEEE (2009)
12

22. Li*, Y., Upadhyay*, U., Slim*, H., Abdelreheem, A., Prajapati, A., Pothigara,
S., Wonka, P., Elhoseiny, M.: Supplementary Material for 3D CoMPaT: Com-
position of Materials on Parts of 3D Things (2022), available at https://

3dcompat-dataset.org/pdf/supplementary.pdf, version 1.0 7, 8, 10, 13, 14
23. Li, Z., Yu, T.W., Sang, S., Wang, S., Song, M., Liu, Y., Yeh, Y.Y., Zhu, R.,

Gundavarapu, N., Shi, J., Bi, S., Xu, Z., Yu, H.X., Sunkavalli, K., Hašan, M.,
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