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Abstract

Reassembly tasks play a fundamental role in many fields
and multiple approaches exist to solve specific reassembly
problems. In this context, we posit that a general unified
model can effectively address them all, irrespective of the in-
put data type (images, 3D, etc.). We introduce DiffAssemble,
a Graph Neural Network (GNN)-based architecture that
learns to solve reassembly tasks using a diffusion model for-
mulation. Our method treats the elements of a set, whether
pieces of 2D patch or 3D object fragments, as nodes of a
spatial graph. Training is performed by introducing noise
into the position and rotation of the elements and itera-
tively denoising them to reconstruct the coherent initial
pose. DiffAssemble achieves state-of-the-art (SOTA) re-
sults in most 2D and 3D reassembly tasks and is the first
learning-based approach that solves 2D puzzles for both
rotation and translation. Furthermore, we highlight its re-
markable reduction in run-time, performing 11 times faster
than the quickest optimization-based method for puzzle solv-
ing. Code available at https://github.com/IIT-
PAVIS/DiffAssemble.

1. Introduction
Spatial Intelligence is the ability to perceive the visual-spatial
world accurately and to perform transformations upon the
perceived space [16]. This skill is commonly assessed with
reassembly tasks, which involve arranging and connecting in-
dividual components to form a coherent and functional entity.
Examples of such tasks include solving 2D jigsaw puzzles
or assembling 3D objects with LEGO blocks. Since the pro-
posal of the first puzzle solver [13], Spatial Intelligence has
challenged the Machine Learning (ML) community with its
intrinsic combinatorial complexity and its numerous appli-
cations, such as genomics [32], assistive technologies [53],
fresco reconstruction [2, 48] and molecular docking [7].

Reassembling a set involves placing each element in its
correct position and orientation to form a coherent structure,
that being a 2D jigsaw puzzle or a 3D object, as in Figure 1.

Figure 1. We propose DiffAssemble as a unified approach to deal
with reassembly tasks in two and three dimensions. DiffAssemble
processes the elements to reassemble as a graph and infer their
correct position and orientation in 2D and 3D space.

Despite the similarities between the tasks, the literature ad-
dresses reassembly tasks in different dimensions separately.

In the 2D dimension, the most common reassembly prob-
lem is related to the resolution of puzzles, particularly those
with pieces that are translated and rotated and have a regular
shape, i.e., square pieces of the same dimension. Due to
the regularity of the pieces, the problem can be treated as
a permutation problem and solved via optimization-based
approaches [15, 22, 52]. These solutions are effective but
lack robustness, showing a massive drop in performance
when dealing with non-standard scenarios, such as eroded
or missing pieces [44]. On the other hand, recent learning-
based solutions are robust to distortion in the visual aspect of
the pieces by working in the feature space but cannot handle
rotations and perform worse than greedy approaches in the
standard scenario.
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Regarding the 3D reassembly task, since the 3D pieces
are not regular, it can not be solved as a permutation prob-
lem but has to be solved in the continuous domain, making
it a much more challenging task where optimization-based
solutions cannot be applied. As a part of the ongoing efforts
to address fractured 3D object reassembly, Sellan et al. re-
cently introduced the Breaking Bad dataset [37] that includes
fragments of thousands of 3D objects, and it is commonly
adopted as a benchmark for 3D object reassembly solutions.
Despite the interest of the machine learning community, the
results achieved in 3D reassembly tasks have yet to reach
the same level of performance as their 2D counterparts due
to the increased complexity of the task.

We argue that 2D jigsaws and 3D objects are two aspects
of the same problem, namely reassembly. All these tasks
share some properties and, potentially, common solutions.
Nonetheless, methods that tackle only one of these tasks are
too narrow to generalize to the others. A unique approach
that tackles all reassembly tasks at once may benefit from
their shared characteristics.

This work introduces DiffAssemble, a general frame-
work for solving reassembly tasks using graph representa-
tions and a diffusion model formulation. In contrast to prior
learning-based approaches for reassembly tasks, which typi-
cally tackle the problem in a single step, our approach uses
a multi-step solution strategy leveraging Diffusion Proba-
bilistic Models (DPMs) to guide the process. We represent
the elements to be reassembled using a graph formulation,
allowing us to work with an arbitrary number of pieces. Each
piece is modeled as a node that contains the piece’s visual
appearance, extracted with an equivariant encoder, and the
piece’s position and orientation. By mapping the appearance
to a latent space, we can remove the separation that exists
between 2D and 3D tasks and propose a unique solution.

We structure the learning problem using the Diffusion
Probabilistic Models (DPM) formulation. We iteratively
add Gaussian Noise to each piece’s starting position and
orientation until they are randomly placed in the Euclidean
space. We then train an Attention-based Graph Neural Net-
work [40] to reverse this noising process and retrieve the
pieces’s original pose from a random starting position and
orientation. By adopting a sparsifying mechanism [41] on
the graph, we run DiffAssemble on graphs with up to 900
nodes with minimal loss in accuracy while greatly reducing
the memory requirement.

Our solution achieves state-of-the-art performance in
most 2D and 3D tasks, showcasing that these tasks share
common characteristics and can thus be solved through a
unified approach. In 2D, compared to optimization-based
solutions, our solution is more robust to missing pieces and
much faster, i.e., 5 seconds to rearrange 900 pieces compared
to 55 seconds for the fastest optimization approach. In 3D,
our method achieves state-of-the-art results in both rotation

and translation accuracy without sacrificing one for the other,
as is the case for previous learning-based solutions.

Main Contributions and Novelty of the Work:
• We propose DiffAssemble, a unified learning-based solu-

tion using diffusion models and graphs neural networks
for reassembly tasks that achieve SOTA results in most 2D
and 3D without distinguishing between the two.

• We show that reassembly tasks in 2D and 3D share several
key properties and that model choices such as the use of
different losses, different diffusion chains, and equivariant
features.

• To the best of our knowledge, DiffAssemble is the first
learning-based solution that can handle rotations and trans-
lations for 2D visual puzzles.

2. Related Works
In this section, we revise the main literature for reassembly
tasks in 2D and 3D. We complement the discussion with a
brief overview of recent advancements in diffusion models
and graph neural networks.

Reassembly Tasks. Reassembly tasks captivate the atten-
tion of the research community as a benchmark for investi-
gating the effectiveness of solutions that employ a reasoning
process in the spatial domain. Here, we present the relevant
works for the most common reassembly task in 2D and 3D:
jigsaw puzzles and fracture object reassembly.

2D jigsaw puzzles. Puzzles are used to investigate the
intricacies of image ordering with inherent combinatorial
complexity [5]. Among the most successful strategies are
those rooted in optimization and greedy approaches that
rely on hand-crafted features [15, 22, 52]. More recently,
there has been a shift towards employing learning-based
methods to solve puzzles with only shifted pieces [18, 28, 34,
44]. These approaches demonstrate greater resilience when
handling inputs with distortions, though they perform worse
compared to optimization methods in standard scenarios.
Moreover, these methods do not handle rotated pieces.

3D fractured objects. Fractured object reassembly in 3D
is extensively explored in the literature [4, 14] and has appli-
cations in numerous fields, such as fresco reconstruction [2],
and furniture assembly [27]. A recent effort in solving the
problem was introducing the Breaking Bad dataset [37]. In
Breaking Bad, the challenge involves reconstructing a bro-
ken object from multiple fragments. Those fragments are
not labeled with any semantic information, as in many real-
world applications [2]. Previous research efforts focus on
predicting 6-degree-of-freedom poses for input parts (such as
chair backs, legs, and bars) [54] and assembling 3D shapes
from images of the complete object [29]. These prior in-
vestigations heavily lean on the semantic details of object
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Figure 2. Framework of our proposed DiffAssemble for reassembly tasks, here is shown for the 3D task. Following the Diffusion Probabilistic
Models formulations, we model a Markov chain where we inject noise into the pieces’ position and orientation. At timestep t = 0, the
pieces are in their correct position, and at timestep t = T , they are in a random position with random orientation. At each timestep t, our
attention-based GNN takes as input a graph where each node contains an equivariant feature that describes a particular piece and its position
and orientation. The network then predicts a less noisy version of the piece’s position and orientation.

parts, overlooking essential geometric cues. Neural Shape
Matching (NSM) [4] addressed the two-part mating problem
by emphasizing shape geometries over semantic information.
SE(3)-Equiv [50] tackles the problem with specific design
choices that go beyond object reassembly, e.g., adversarial
and reconstruction losses.

Unlike the previous works, which focus on just one aspect
of the problem, we propose a unified solution for reassembly
tasks. Furthermore, to the best of our knowledge, we are the
first to propose a learning-based approach for puzzles with
translated and rotated pieces.

Diffusion Probabilistic Models. DPMs are generative
models that have shown remarkable results in recent years.
These models approach the generation process through a
bidirectional iterative chain. In one direction, they transform
data into a Gaussian distribution by incrementally adding
Gaussian noise. They are then trained to reverse this pro-
cess, generating new samples from the initial distribution
starting from random noise [19]. DPMs demonstrate re-
markable versatility across a range of tasks applications,
including image synthesis [10], semantic segmentation [1],
and generation [31]. Their applicability extends to spatial
data processing in both 2D and 3D contexts, where they have
been effectively employed in object detection [3], scene gen-
eration [21], and 3D protein modeling [51].

Our work proposes the use of Diffusion Models for re-
assembly tasks. We introduce a unified model capable of
operating effectively in both 2D and 3D space, aiming to re-
trieve the original position and orientation of the constituent
pieces accurately.

Graph Neural Networks. Graph Neural Networks
(GNNs) underwent significant advancements in recent years
with new models like GCN [24], GraphSage [30], and Sig-
MaNet [12]. These advancements have continued with new
architectures [47, 55] that incorporate attention mechanisms
that weigh the importance of nodes during message passing.
The use of Graphs and GNNs has seen widespread adoption
for spatial applications, as they are able to describe an ar-
bitrary number of elements and their relation to each other.
Common applications include scene graph generation [36],
3D scene generation [9], object localisation [17], relative
pose estimation [43], and robot navigation [35]. Scalabil-
ity is a common issue affecting GNNs and Exphormer [41]
represents a significant stride in scalable graph transformer
architectures, utilizing a sparse attention mechanism that
leverages virtual global nodes and expander graphs [8].

We represent the puzzle as a graph and process it by using
an Attention-based GNN [39]. We adopt the Exphormer [41]
to enhance DiffAssemble’s capability in handling the com-
putational demands of reassembly tasks.



3. Our Method

We reassemble a set of elements by predicting the transla-
tion and rotation, i.e. the pose of a piece, with the objective
to arrange the elements in a coherent structure, such as a
non-broken 3D object or a solved 2D puzzle. Figure 2 sum-
marizes our approach. We represent the set of pieces to
reassemble as nodes in a complete graph, with each node
having a modality-specific feature encoder. We adapt the
DPM formulation [19] by introducing time-dependent noise
into each element’s translation and rotation. Noise injec-
tion resembles shuffling the set of elements, e.g., randomly
distributing puzzles pieces or 3D object fragments in the
2D or 3D Euclidean space. During training, we process the
noisy input graph via an Attention-based GNN to restore
the initial translation and rotation of all elements. At in-
ference, we initialize each element’s starting positions and
rotation from pure noise, and iteratively denoise the graph,
reassembling the coherent structure in the process. Section
3.1 introduces our graph-based formulation. Section 3.2 dis-
cusses the input’s feature representation. Section 3.3 presents
our diffusion-based approach, and Section 3.4 defines our
attention-based architecture and the sparsity mechanism.

3.1. Graph Formulation

We assign each of the M pieces m to a node vm, defining
a set of vertices V = {vm}m∈[1,...,M ]. Since we do not
want to introduce a priori relationship between the pieces,
we connect all the nodes together. This defines a complete
graph G = (V,E), where E is the set of edges. We define
the feature of each node vm by concatenating the following
vectors:
• Features vector hm ∈ Rd, where d is the dimension of the

feature generated by a equivariant encoder. DiffAssemble
is agnostic to the adopted feature backbone.

• Translation vector sm ∈ Rn, where n represents the
dimensionality of the continuous Euclidean space in which
the reassembly task is conducted.

• Rotation matrix Rm ∈ SO(n), where SO(n) is the Spe-
cial Orthogonal Group in n dimensions. We also define
a function fr(rm) = Rm that maps any vector rotation
representation rm to Rm.

The advantage of using this graph formulation lies in its
ability to be flexible with respect to the cardinality of V . For
this reason, DiffAssemble is able to work simultaneously
with puzzles of various sizes rather than being limited to
handling only one size at a time.

3.2. Feature Representation

A fundamental aspect of our architecture lies in its capability
to operate with element features hm, which can be extracted
by pre-trained encoders. Features play a central role in
solving reassembly tasks, as they provide the network with

inductive biases. This intuition is particularly relevant for
complex tasks involving translation and rotation.

To extract the features, we first translate the piece so that
its center lies on the origin and then use a rotation-equivariant
encoder to map the visual and shape information into the
latent space. Rotation-equivariant features undergo the same
rotation that is applied in the original input space and are thus
the best candidates to enable the neural network associating
a specific rotation Rm (in the input space) to the features
map hm. More details on group equivariance are given in
the Supplementary Material.

3.3. Diffusion Models for Reassembly Tasks

We adopt Diffusion Probabilistic Models as defined in
DDIM [42] to solve the reassembly tasks. We define a com-
pact representation of the initial translation sm0 and rotation
rm0 of piece m as a concatenated vector xm0 = [sm

⊤

0 , rm
⊤

0 ]⊤.
At training time, we iteratively add noise sampled from

a Gaussian Distribution N (0, I) to their poses (Forward
Process). Following that, we train DiffAssemble to reverse
this noising process (Reverse Process) and to obtain the
initial poses X0 = {xm0 }m∈[1,··· ,M ].

Forward Process. We define the forward process as a
fixed Markov chain that adds noise following a Gaussian
distribution to each input xm0 to obtain a noisy version, xmt ,
at timestep t. Following [19], we adopt the variance βt

according to a linear scheduler and define q(xmt |xm
0 ) as:

q(xmt |xm
0 ) = N (xmt ;

√
αtxm0 , (1− αt)I), (1)

where αt =
∏t

c=1(1− βc) and I is the indentity matrix.

Reverse Process. The reverse process iteratively retrieves
the initial poses for the set of elements X̂t−1 given current
(noisy) poses Xt = {xm

t }m∈[1,··· ,M ] and the features H =

{hm}m∈[1,··· ,M ]. X̂t−1 is computed as:

X̂t−1 =
1

√
αt

(
Xt −

1− αt√
1− αt

ϵθ(Xt, H, t)

)
, (2)

where αt = 1− βt, and ϵθ(Xt, H, t) is the estimated noise
output by DiffAssemble that has to be removed from X̂t at
timestep t to recover X̂t−1.

Losses. Following a standard practice in Diffusion Mod-
els [19], we train DiffAssemble to predict X̂0 instead of
X̂t−1. We introduce two loss functions to reconstruct the
intial pose of each piece.

Translation Loss. This loss computes the average dif-
ference between the ground truth translation vectors and the



predicted ones ŝm0 :

Ltr =
1

M

M∑
m=1

||sm0 − ŝm0 ||22,

where || · ||22 is the squared L2 norm.
Rotation Loss. This loss measures the average difference

between the ground truth rotation matrices and the predicted
ones fr(r̂

m
0 ):

Lrt =
1

M

M∑
m=1

||fr(rm0 )⊤fr(r̂
m
0 )− I||22.

3.4. Architecture

We use an Attention-based GNN with L−layers of Unified
Message Passing (UniMP) [40]. UniMP implements a multi-
head attention mechanism over all nodes to scale the infor-
mation gathered from neighboring nodes during message
passing. Multi-head attention is well-suited for graph con-
texts where we lack prior knowledge of node relationships,
i.e., we cannot define an adjacency matrix A.

However, one of the main constraints associated with
these attention-based architectures [47, 55] lies in the inher-
ent definition of a complete graph. This constraint poses a
severe limitation for scaling on large graphs, i.e., dealing
with a large number of elements. To address this constraint,
we employ exphormer [41], which relies on the expander
graph [20] and virtual nodes to reduce memory requirements
by cleverly pruning edges in the graph. In Section 4.3, we
show how we use exphormer to scale to large graphs.

4. Experimental Evaluation
DiffAssemble tackles 3D objects reassembly and 2D jigsaw
puzzles as two possible instantiations of a reassembly task.
We first validate DiffAssemble on 3D object reassembly
(Section 4.1), showing through quantitive and quality results
the benefits of our approach. Section 4.2 discusses the perfor-
mance of our approach on 2D jigsaw puzzles in the standard
scenario and when dealing with missing pieces. We carry
out an ablation study of DiffAssemble’s design choices in
Section 4.1 and in the Supplementary Material. Finally, we
tackle DiffAssemble’s limitation on large puzzles in Section
4.3, demonstrating that DiffAssemble efficiently reassemble
up to 900 elements thanks to the sparsity mechanism.

Throughout this section, tables report the best results in
boldface and the second-best underlined.

4.1. 3D Object Reassembly

First, we explore the application of DiffAssemble to the task
of reassembling objects in 3D.

Figure 3. Qualitative results on Breaking Bad, showing the re-
assembly results for a broken wine glass and a wine bottle. We
compare the results against SE(3)-Equiv [50], which is the current
SOTA method. All results are in the same reference frame, shifted
horizontally so they do not overlap. We show the results with glass
materials to better show overlapping pieces.

Dataset and Evaluation Setting. We test our methods on
3D object reassembly on Breaking Bad (BB) [37]. It is com-
posed of 3D meshes for 20 classes of everyday objects, such
as bottles, plates, glasses. For each of these objects, there are
multiple variants, where the object is broken into multiple
parts by simulating fractures in the geometry. The dataset
provides objects split into 2 to 100 pieces. As proposed in
BB, we train and test using objects composed of 2 to 20
parts. All the objects’ pieces are translated to the origin and
randomly rotated. For each piece, we need to provide a pose
that returns the fragment to its correct location in the object’s
canonical pose. Following the evaluation pipeline in [37],
we report the metrics in terms of Root Mean Squared Error
in rotation RMSE (R), Root Mean Square Error in transla-
tion RMSE (T), and Part Accuracy (PA), which measures the
percentage of parts whose Chamfer Distance to ground-truth
is less than 0.01 [54]. We compare with the three baselines
proposed in BB: Global, DGL, LSTM. In addition, we com-
pare with SE(3)-Equiv. [50], the current state of the art on
BB, which integrates both equivariant and invariant features.
Regarding our approach, we use the base model along with
two variations: one without the diffusion process, predicting
the translation and rotation of the pieces in a single step, and
another version that omits the use of an equivariant encoder.

Implementation Details. Each fragment m of a 3D object
is a point-cloud of 1, 000 points. For the 3D shape reassem-
bly, we use VN-DGCNN [50] as our feature extractor. This
backbone takes as input the point cloud of each piece and
returns both an equivariant and invariant representation. We
only consider the equivariant features to create the element
features hm. For this task, we parameterize the rotation in
3D as a unit quaternion, qm = qm0 +iqm1 +jqm2 +kqm3 , where



METHOD
RMSE (R) ↓ RMSE (T ) ↓ PA ↑

degree ×10−2 %
Global [37] 81.6 15.2 17.5
DGL [37] 81.4 14.9 25.4
LSTM [37] 87.4 15.8 11.3
NSM [4]† 83.3 15.3 10.6
SE(3)-Equiv [50] 77.9 16.7 8.1
DiffAssemble - No Diffusion Process 83.6 17.1 3.1
DiffAssemble - No Equivariant Enc. 81.7 17.0 18.3
DiffAssemble 73.3 14.8 27.5

Table 1. Quantitative results of four learning-based shape reassembly baselines and DiffAssemble on the everyday object subset.
†Modified version, suggested in [50], capable of handling multi-part assembly.

STAGE CHANGES
RMSE (R) ↓ RMSE (T ) ↓ PA ↑

degree ×10−2 %

Representation Non-Equivariant Enc. 81.68 17.04 18.32
Invariant Enc. 77.06 18.09 14.27

Diff. Design

6 degree-of-freedom rotation 75.60 18.80 18.50
w/o Chamfer Distance loss 72.75 14.78 24.10
w/ Chamfer Distance loss 73.34 14.82 27.48
No Diff. process 83.60 17.12 3.10

GNN Standard GCN [24] 74.56 15.79 21.33

Table 2. Ablation for 3D object reassembly on the everyday object subset.

qm0 , qm1 , qm2 and qm3 are real numbers, i, j and k are mutu-
ally orthogonal basis vectors. Thus, we define the vector
rm = [qm0 , qm1 , qm2 , qm3 ]⊤. Since we parameterize rotations
as unit quaternions, i.e., |qm| = 1, the direct application
of the forward process of the diffusion steps is not feasible
as it may generate rotation values outside the SO(3) man-
ifold [25]. Following [25], we address this limitation by
leveraging the diffusion processes on the Lie group SO(3)
(more details are available in the Supplementary Material).
As proposed in [37], we also test the effect of an additional
Chamfer Distance Loss term.

Results. We report in Table 1 the results of the compar-
ison on BB. Among the baselines, SE(3)-Equiv, which is
the current SOTA, performs best in terms of RMSE(R), and
DGL performs best in terms of RMSE(T) and PA. These
baselines trade accuracy in rotation with accuracy in trans-
lation, with SE(3)-Equiv performing well in rotation and
worst in translation and DGL performing well in translation
and badly in rotation. Contrarily, DiffAssemble outperforms
the baselines on all metrics: rotation, translation, and part
accuracy, showing the effectiveness of our approach.

When comparing the two variants of our approach, we
see the importance of using both an equivariant feature rep-
resentation and the diffusion process. Notably, we observe
significantly worse results when one of these elements is
missing: RMSE(R) drops by ∼ 10 points, RMSE(T) drops
by ∼ 3 points, and part accuracy drops from 27% to 3%.

In the following paragraph, we report the results with
other variants of our approach. Figure 3 reports a qualita-
tive comparison between DiffAssemble and the SE(3)-Equiv
when reassembling a wine glass and a bottle, both frag-
mented in four pieces. We observe that SE(3)-Equivariant
struggles in dealing with both large and small pieces,
and shifts all pieces to the middle point. Contrarily,
DiffAssemble was able to handle big pieces well but strug-
gled with small pieces like the fragments of the glass stem.

Ablation. Table 2 reports results assessing i) the impor-
tance of the feature representation, ii) the impact of the
diffusion design, and iii) the benefit of using attention.

We notice that employing invariant and non-equivariant
features leads to worse performance. This result highlights
the importance of providing the network with inductive bi-
ases, specifically rotation-equivariant feature, to solve this
task. In the Diffusion Design section of the table, we com-
pare our implemented forward process for handling rotation
in SO(3) with a direct application of Gaussian Noise to the
6D representation (6DOF) [56]. This straightforward ap-
proach negatively impacts the model’s performance across
all metrics. Following [37], we investigate the use of the
Chamfer Distance (CD) loss alongside our general losses.
We see that by using the CD loss, we improve in Part Accu-
racy but perform worse in both RMSE for translation and
rotation. Nevertheless, the loss in performance is minor, and
with or without Chamfer Distance loss, aside from the part



DATASET
METHOD PuzzleCelebA PuzzleWikiArts

6x6 8x8 10x10 12x12 6x6 8x8 10x10 12x12

Optimization
Based

Gallagher [15] 80.21 55.18 71.19 69.81 71.88 61.63 54.15 44.68
Yu et al. [52] 98.63 94.65 98.33 93.33 94.62 92.95 90.99 89.88
Huroyan et al. [22] 98.47 97.45 98.65 97.08 92.69 91.37 89.74 88.28

Learning
Based

DiffAssemble - No Diff. 99.43 79.84 99.05 91.28 73.07 54.70 22.68 18.27
DiffAssemble - No Equiv. 96.12 71.62 91.98 64.15 25.31 14.63 8.19 4.96
DiffAssemble 99.51 87.66 99.30 97.76 90.65 72.79 63.33 53.08

Table 3. Results for Jigsaw puzzle solving on PuzzleCelebA and PuzzleWikiArts

DATASET
METHOD CelebA WikiArts

6x6 12x12 6x6 12x12

Gallagher [15] 33.28 19.18 32.19 24.12
(-46.93) (-50.63) (-39.69) (-20.56)

Yu [22] 33.45 21.78 32.53 24.65
(-66.85) (-72.84) (-62.09) (-65.23)

Huroyan [52] 18.18 0.09 17.14 0.08
(-80.29) (-88.45) (-75.55) (-80.28)

DiffAssemble 96.92 76.49 51.21 27.09
(-2.59) (-32.81) (-39.44) (-25.99)

Table 4. Results for Jigsaw puzzle solving with 30% missing pieces
on PuzzleCelebA and PuzzleWikiArts. The percentage variance of
the model relative to the result presented in Table 3 is reported
within square brackets.

accuracy, our method performs best.
Finally, we investigate the impact of the attention mech-

anism on information propagation. For this purpose, we
define the adjacency matrix A ∈ RM×M as an all-ones ma-
trix and, instead of UniMP, we use the Graph Convolutional
Network (GCN) [24]. DiffAssemble with UniMP consis-
tently outperforms DiffAssemble with GCN, highlighting
the benefit of adopting an attention mechanism.

4.2. 2D Jigsaw Puzzle with Rotated Pieces

We adopt DiffAssemble to reassemble visual jigsaw puzzles
with translated and rotated pieces. In this task, we need to
reassemble an image by translating and rotating a collection
of image patches. The patches are regularly shaped, non-
overlapping, and initialized with a random orientation.

Dataset and Evaluation Setting. Following [44], we test
our approach on two datasets of puzzles: PuzzleCelebA [26]
and PuzzleWikiArt [45]. PuzzleCelebA is a dataset of
celebrities’ faces, while PuzzleWikiArt contains paintings
from various artists in many styles. We compare with three
optimization-based methods for visual puzzle-solving: i)
Gallagher [15], ii) Yu et al. [52], and iii) Huroyan et al. [22].

We report the results using various numbers of patches,
from 36 (6× 6) to 144 (12× 12). We present the outcomes
using the direct comparison metric [5], where a piece is suc-

Figure 4. (a) Patch alignment in inference from t = T to t = 0.
(b) Qualitative comparison with 30% missing pieces.

cessfully placed if it is both correctly positioned and rotated.
While our solution operates in the continuous domain, the
evaluation is conducted in the discrete one of [15]. To do
so, we first apply to each piece the predicted (continuous)
translation and rotation; then, we discretize its pose by snap-
ping the piece to the closest cell in a n× n squared lattice,
n =

√
M , and its rotation to the nearest π/2 angle.

Implementation Details. Each piece has to be arranged
into a two-dimensional continuous space with boundaries
[−1, 1]. Following [15], the possible initial rotation of each
patch is represented by the set {0, π/2, π, 3π/2}, which are
elements of the cyclic group Z4 [15]. We parameterized
the rotation in 2D as: rm = [cos(θm), sin(θm)]⊤ [56] and
we optimize θm in the continuous domain. For the feature
extractor, we use a version of ResNet18 that is equivariant [6]
to the cyclic group Z4.

Results. Table 3 reports results for the visual puz-
zle reassembly task, with rotated and translated pieces.
DiffAssemble achieves SOTA results in CelebA, improv-
ing over the optimization-based method. In Wikiart,
the optimization-based approaches [22, 52] outperform
DiffAssemble. An explanation for this gap is that our method
relies not only on pure visual appearances but also on the
semantic content of the images. CelebA has a very strong
semantic structure, containing images of faces in similar
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poses. In contrast, Wikiart has very diverse images with
no predefined structure. Optimization-based approaches di-
rectly match visual content along the borders. This design
makes them a strong baseline when all patches are provided,
at a cost of time efficiency, as shown in Figure 6. Section 4.3
further discusses efficiency as we scale up to larger puzzles.

Relying on semantics also makes DiffAssemble’s robust
when some of the pieces are missing. Testing robustness
to missing pieces is common when solving jigsaw puz-
zles [15, 44], as it reflects real-world application, e.g., fresco
reconstruction [2]. We evaluate DiffAssemble and all the
baselines when 30% of the pieces are randomly removed
and report results in Table 4. DiffAssemble outperforms
Huroyan et al. [52], the second-best model, in both CelebA
and Wikiart. Optimization-based methods experience a sig-
nificant decrease in accuracy on both 6 × 6 and 12 × 12
puzzles, while DiffAssemble retains high performances even
in this challenging setting. Figure 4 shows DiffAssemble
solving a CelebA puzzle from randomly shuffled pieces,
along with a comparison with all the baselines when 30%
of the pieces are missing. In the Supplementary Material,
we present an ablation on the design choices for 2D Jigsaw
puzzle, analogously to the above-mentioned ablation study
for 3D object reassembly.

4.3. Scaling to Larger Graphs

We investigate DiffAssemble with Exphander [41] for higher-
dimensional puzzles. We explore the effectiveness of scaling
our method with PuzzleCelebA puzzles up to 900 pieces
(30× 30 puzzles). DiffAssemble with Expander prunes 80%

of the edges from the complete graph during training and
introduces 8 virtual nodes to ensure global connectivity. Fig-
ure 5 shows the memory requirements for DiffAssemble with
and without sparsity, executed on standard consumer-grade
hardware (NVIDIA GeForce RTX 4090 with 24GB). When
the graph has 900 elements, our method with sparsity halves
the memory consumption without compromising accuracy.

Although our method requires much memory, it is signifi-
cantly faster than memory-intensive optimization methods.
We compare DiffAssemble with the three optimization-based
approaches. Figure 6 reports the time required for the four
methods to solve a puzzle based on size. The time required
by optimization-based approaches increases exponentially
with the number of elements and, consequently, with the
number of matches. On the other hand, DiffAssemble re-
assembles up to 900 elements without scaling in time re-
quirement, e.g., it solves 30 × 30 puzzles in 5s with 95%
accuracy. This represents a significant improvement over
Gallagher, the faster optimization-based solution, which has
a run-time of 55s with an accuracy of 58%.

5. Conclusion
In this work, we introduced DiffAssemble, a general frame-
work for tackling reassembly tasks through graph repre-
sentations and a diffusion model formulation. By framing
reassembly as a denoising task, we leverage an Attention-
based Graph Neural Network to iteratively refine the pose of
each piece through a diffusion process.

Our experimental evaluation showcases the effectiveness
of DiffAssemble, spanning 3D object reassembly and 2D
puzzles with translated and rotated pieces. The results
demonstrate SOTA performance in most 2D and 3D sce-
narios, revealing a common ground between these seemingly
disparate tasks. Notably, in the 2D domain, DiffAssemble ex-
hibits robustness to missing pieces and achieves remarkable
efficiency compared to optimization-based methods. In the
3D, our solution obtains SOTA results, maintaining accuracy
in translation and rotation, unlike previous solutions.

Limitations and Future Research. One of the main limi-
tations of DiffAssemble is its high memory usage, even by
introducing the sparsity mechanism based on the expander
graph. Future efforts will focus on mitigating the memory
demands and exploring further reassembling scenarios while
dealing with data from real-world scans.
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DiffAssemble: A Unified Graph-Diffusion Model for 2D and 3D Reassembly

Supplementary Material

A. Experiment Details
Hardware. The experiments were conducted on 2 different
machines: four NVIDIA Tesla V100 16GB, 380 GB RAM,
and 2x Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz
Sky Lake CPU, and one NVIDIA RTX 4090 GPU, 64 GB
RAM, and 12th Gen Intel(R) Core(TM) i9-12900KF CPU
@ 3.20GHz CPU.

Model Settings. We train DiffAssemble with a learning
rate of 10−4 and Adagrad as the optimization algorithm [11].
During our training process, we set a maximum of 1000
epochs, but we stop the training earlier to prevent unneces-
sary iterations when the loss no longer decreases.

B. Equivariant Feature Representation
As we presented in Section 3.2, one of key point of our
proposal lies in its ability to work with element features
hm, which can be extracted by any pre-trained encoders. In
particular, we discover the importance to extract rotation-
equivariant features.

A function ϕ is equivariant to the action of a group G if
ϕ(Sg(·)) = S

′

g(ϕ(·)) for all g ∈ G, where Sg and S
′

g are
linear representations related to the group element g [38].
This means that applying ϕ to the codomain of Sg(·) is
equivalent to applying S

′

g ∈ G to the codomain of ϕ. In
this work, the transformation Sg and S

′

g are rotations. As
a result, the equivariant function ϕ(·), i.e. the backbone,
ensures the consistency of the rotational effect irrespective
of whether it is applied before or after the function. Conse-
quently, DiffAssemble associates a specific rotation rm (in
the input space) to the features vector hm.

C. Diffusion process and Rotation in 3D
We provide a more detailed description of how we introduce
Gaussian Noise with 3D rotations. Following [25], we use
a specific procedure to scale the rotation matrices fr(rmt )
by i) converting the rotation matrix to values in the Lie
algebra so(3), ii) multiplying them element-wise with t-
dependent scalars, and iii) converting back to a rotation
matrix through matrix exponentiation. Analogous to an
addition in Euclidean space, the composition of rotations is
done through matrix multiplication in SO(3) as:

λ(γt, rmt ) = exp(γt log(fr(rmt ))),

where λ(. . . ) is the geodesic distance flow from I, the iden-
tity matrix, to rmt by an amount γt.

In particular, for the Forward Process, we rewrite Equa-
tion (1) to inject noise into rm0 :

q(rmt |rm0 ) = IGSO(3)(λ(
√
αt, rm0 ), (1− αt)),

where IGSO(3) is the isotropic Gaussian distribution (IG) that
is compatible with SO(3) rotation directly. The IG distri-
bution is parameterized in an axis-angle form by sampling
uniformly an axis and rotation angle ω ∈ [0, π] as:

f(ω) =
1− cosω

π

∞∑
l=0

(2l + 1)e−l(l+1)ϵ2 sin((l + 0.5)ω

sin(ω/2)
.

For the Reverse Process, letting Rt = {rmt }m∈[1,··· ,M ] and
H = {hm}m∈[1,··· ,M ], we rewrite Equation (2) as follows:

R̂t−1 = λ

(√
αt−1

αt
, Rt

)
λ

(
1− αt−1√

αt
, ϵrot

θ (Rt, t,H)

)T

,

where ϵrot
θ (Rt, t,H) is the estimated noise that has to be

removed from Rt to recover R̂t−1.

D. Additional Ablations
Missing Fragments in 3D Objects Reassembly We as-
sess the performance of DiffAssemble and the baselines in
scenarios involving missing 3D pieces. We consider a setting
where each object is composed of 10 to 20 parts. We test
the methods in four different scenarios: i) without missing
pieces, ii) 10% of missing pieces, iii) 20% missing pieces,
and iv) 30% of missing pieces. We do not retrain the models
with missing pieces, but instead, we use the same method and
weights as in the main paper experiment described in Sec-
tion 4.1. To account for potential variations in fracture sizes
within each object, we report the experiment five times using
different seeds. This methodology helps alleviate potential
biases introduced by excluding fractures with differing levels
of complexity. Mean and standard deviation for each metric
provide an indication of the overall behavior of the compared
methods.

Table 2 reports the results, demonstrating that in all four
scenarios, DiffAssemble outperforms the baseline in 2 out
of 3 metrics. There is a decrease in performance when we
increase the number of missing pieces, even if this reduction
is minimal.

2D Jigsaw Puzzle. Table 6 reports further ablation results
for the puzzle setting, which we could not include in the
main paper due to space constraints.



Missing 0% 10%

Method RMSE (R) ↓ RMSE (T ) ↓ PA ↑ RMSE (R) ↓ RMSE (T ) ↓ PA ↑
degree ×10−2 % degree ×10−2 %

Global 83.00 18.74 7.02 83.86 18.76 6.78
DGL 84.56 18.26 9.72 84.74 18.98 8.42
LSTM 88.26 19.64 4.78 88.40 19.74 4.96
SE(3)-Equiv 81.82 18.50 6.74 82.96 18.54 6.58
DiffAssemble 80.13 19.02 11.61 80.32 19.32 11.20

Missing 20% 30%

Method RMSE (R) ↓ RMSE (T ) ↓ PA ↑ RMSE (R) ↓ RMSE (T ) ↓ PA ↑
degree ×10−2 % degree ×10−2 %

Global 84.20 18.86 6.66 84.76 18.96 6.62
DGL 85.01 19.80 7.34 85.64 20.68 6.56
LSTM 88.72 19.90 4.88 88.96 20.01 4.36
SE(3)-Equiv 82.52 18.72 6.54 82.88 19.48 6.51
DiffAssemble 80.37 19.52 10.67 80.46 19.84 10.43

Table 5. Results for DiffAssemble on BB’s objects with 8-20 pieces when 0%/10%/20%/30% of the pieces are missing pieces. Our approach
is robust even in the hardest scenario where 30% of the pieces are missing.

STAGE CHANGES PuzzleCelebA PuzzleWikiArts
6x6 8x8 10x10 12x12 6x6 8x8 10x10 12x12

Representation Non-Equivariant Enc. 96.12 71.62 91.98 64.15 25.31 14.63 8.19 4.96
Invariant Enc. 22.97 20.01 16.87 13.63 7.64 4.64 2.79 1.66

Diff. Process No Diff. process 99.43 79.84 99.05 91.28 73.07 54.70 22.68 18.27
GNN Standard GCN [24] 85.03 54.35 71.19 45.56 30.12 22.07 10.77 1.08

DiffAssemble Base Implementation (Tab. 3) 99.51 84.94 99.30 97.76 90.65 72.79 63.33 53.08

Table 6. We conduct an ablation study to evaluate the impact of each component of DiffAssemble for Jigsaw puzzle solving on PuzzleCelebA
and PuzzleWikiArts. The base implementation corresponds to our proposed approach, as reported in Table 3 of the main paper.

We assess the benefit of employing rotation-equivariant
features, instead of invariant and non-equivariant ones.
These two last representations lead to worse performance
in both datasets. In particular, these differences are more
evident with the WikiArt dataset. DiffAssemble obtains an
average improvement of 94.41% and 82.43% compared to
DiffAssemble with invariant and non-equivariant features.
This result highlights, one more time, the importance of
employing rotation-equivariant features to solve reassembly
tasks when rotation is involved.

We aimed at demonstrating that the adoption of the diffu-
sion process is well-founded and effective. For this reasons,
we experiment DiffAssemble wihtout the diffusion process.
The results show that predicting the pose without the dif-
fusion process, i.e., in 1 step, leads to worst performance,
which serves as strong justification for the inclusion and use
of the diffusion process in our approach.

Finally, we conducted an ablation for the GNN architec-
ture adopted in DiffAssemble. Specifically, we assess the

Graph Convolutional Network (GCN) [24] against UniMP.
The goal is to investigate the impact of the attention mecha-
nism on information propagation. For this purpose, we de-
fine the adjacency matrix A ∈ RM×M of the GCN as an all-
ones matrix. Tables 6 reports the results of this comparison
in the 2D and 3D scenarios, respectively. DiffAssemble with
the use of UniMP consistently outperforms DiffAssemble
with GCN, showing a remarkable improvement. These re-
sults highlight the importance of employing a mechanism
that can effectively capture relationships among nodes.

D.1. Effect of Edge Pruning

Figure 7 presents an ablation study on PuzzleCelebA, where
we vary the pruning rate during training. Increasing the
pruning, i.e., reducing the graph size, has a minor effect on
the final results.
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Figure 7. Ablation Sparse Attention Mechanism for Jigsaw puzzle
solving on PuzzleCelebA.

E. Dataset Details

3D Reassembly Task. A 3D reassembly involves aligning
fragments of a broken object into its original form, an es-
sential task with applications in artifact preservation, digital
heritage archiving, computer vision, robotics, and geome-
try processing. Despite its practical importance, the field
has faced challenges due to the lack of suitable datasets for
studying the natural fracture process. Existing datasets, such
as PartNet [33], AutoMate [23], and JoinABLe [49], rely on
semantic segmentation, failing to represent objects broken
under natural, physically realistic conditions. Breaking Bad
(BB) [37] fills this gap by simulating fractures using an algo-
rithm that accounts for an object’s most geometrically natural
breaking patterns, thus creating a dataset that more realisti-
cally represents the challenges faced in fragments reassem-
bly. BB contains approximately 10,000 meshes sourced from
PartNet and Thingi10k. Each mesh includes 80 fractures,
resulting in a total of 1,047,400 breakdown patterns. The
dataset is divided into three subsets: everyday, artifact, and
other. In this work, we focus on the everyday subset, as
it is the commonly used dataset for evaluation in previous
literature [50]. Qualitative examples can be found in the
video attached to this Supplementary Material.

2D Reassembly Task. In this task, we evaluated
DiffAssemble on two datasets: PuzzleCelebA and Puz-
zleWikiArts. Figure 8 shows some examples of inputs and
reconstructions. More examples can be found in the video
attached as Supplementary Material.
• PuzzleCelebA is based on CelebA-HQ [26] which con-

tains 30K images of celebrities in High Definition (HD).
Despite its superficial simplicity, this dataset poses sig-
nificant challenges for puzzle-solving algorithms due to
the inherent symmetry in human faces and often indistinct
backgrounds. The dataset is divided in 80-20% train-test
split, with 6,000 test puzzle permutations and randomly
rotated patches.

• PuzzleWikiArts is based on WikiArts [46], and contains

Figure 8. Qualitative results showing the diffusion process from
random to solved puzzle. Each arrows correspond to one piece of
the puzzle and its orientation indicate the orientation of the piece.

63K images of paintings in HD. This dataset is particularly
challenging due to very different content, artistic styles,
and intricate patterns, which test the limits of puzzle-
solving algorithms. The dataset is split into an 80-20%
train-test ratio, resulting in 50k training images and 13k
test puzzles across various grid sizes. It represents a more
challenging dataset for puzzle solving as the paintings
do not have a common pattern as in PuzzleCelebA (i.e.
portraits).



METHOD W/ % DEGREE PuzzleCelebA
6x6 8x8 10x10 12x12 14x14 16x16 18x18 20x20

Degree 20%
Classical dropout 91.60 57.08 82.32 50.18 74.43 25.40 61.45 28.35
Sparse Attention Mechanism 92.37 59.45 87.67 54.07 83.11 31.07 73.88 32.97
Degree 60%
Classical dropout 99.17 72.93 98.56 94.07 98.53 46.48 98.35 92.51
Sparse Attention Mechanism 99.04 73.91 98.43 94.35 98.70 48.26 97.75 93.29
Degree 80%
Classical dropout 99.15 76.45 98.75 95.87 98.58 51.51 98.14 94.93
Sparse Attention Mechanism 99.15 78.18 98.77 95.71 98.69 52.28 97.80 94.34

Table 7. Ablation Sparse Attention Mechanism for Jigsaw puzzle solving on PuzzleCelebA.
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